Equivalence of anchored and ANOVA spaces via interpolation
نویسندگان
چکیده
منابع مشابه
A note on equivalence of anchored and ANOVA spaces; lower bounds
We provide lower bounds for the norms of embeddings between γ-weighted Anchored and ANOVA spaces of s-variate functions with mixed partial derivatives of order one bounded in Lp norm (p ∈ [1,∞]). In particular we show that the norms behave polynomially in s for Finite Order Weights and Finite Diameter Weights if p > 1, and increase faster than any polynomial in s for Product Order-Dependent Wei...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولCharacterization of splitting for Fréchet-Hilbert spaces via interpolation
Based on the methods from interpolation theory we give a characterization of pairs (E,F ) of Fréchet-Hilbert spaces so that for each Fréchet-Hilbert space G each short exact sequence 0 −→ F −→ G −→ E −→ 0 splits. This characterization essentially depends on a key condition (S) of an interpolation nature. An equivalent description of (S) in terms of appropriate families of interpolation function...
متن کاملConstrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملOn the topological equivalence of some generalized metric spaces
The aim of this paper is to establish the equivalence between the concepts of an $S$-metric space and a cone $S$-metric space using some topological approaches. We introduce a new notion of a $TVS$-cone $S$-metric space using some facts about topological vector spaces. We see that the known results on cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 2016
ISSN: 0885-064X
DOI: 10.1016/j.jco.2015.11.002